PAGE: 1/6

# **TECHNICAL SPECIFICATION**

# LSSS-LN0063-06

# **FOR**

# 4 PAIR SF/UTP CABLES (ENHANCED CATEGORY 5)

(Ref: ISO/IEC 11801, IEC 61156-5, IEC 60332-1, IEC 60332-3, IEEE 383)

Prepared by

V. T. Nam

Vo Thanh, Nam

Engineer

**LSCV** Development Team

Approved by:

Young In Soo

Young Ju, Seo Senior Manager

**LSCV** Development Team

PAGE: 2/6

#### 1. SCOPE

This specification is based on the standards of IEC 61156-5 and ISO/IEC 11801, and covers the requirements for screened foiled twisted pair (SF/UTP) cables of  $100\Omega$ , Enhanced Category 5 (Cat.5E).

- Applicable cable size & type; 4 Pairs, PVC or LSZH sheath

### 2. CABLE CONSTRUCTION

### 2.1 Conductor

The conductors shall be solid, annealed and bare copper with a diameter of AWG24 and minimum acceptable diameter shall be 0.485mm.

## 2.2 Insulation

Each conductor shall be insulated with solid high density polyethylene.

The insulation shall be uniform and shall not have any defects.

The diameter over the insulation shall be maximum 1.22mm.

# 2.3 Color code

The color code of insulation shall be shown as Table 1.

Table 1. Color code of insulation

| Pair No. | A - 1 | wire   | B - wire |        |  |
|----------|-------|--------|----------|--------|--|
|          | Base  | Stripe | Base     | Stripe |  |
| 1        | White | Blue   | Blue     | -      |  |
| 2        | White | Orange | Orange   | -      |  |
| 3        | White | Green  | Green    | -      |  |
| 4        | White | Brown  | Brown    | -      |  |

<sup>\*</sup>Note) The stripe marking shall be applied on the white color.

# 2.4 Core Assembly

Two insulated conductors shall be twisted into a pair.

Four twisted pairs shall be assembled into a cable core.

# 2.5 Screen

The polyester tape shall be applied over the cable core for core wrapping, if necessary. The aluminum tape coated on one side with plastic film shall be applied over the core wrapping for screening. The braided screen with tinned copper wires shall be applied over aluminum tape screen. The percentage of braid coverage shall be minimum 30% according to EN 50288 standard.

# 2.6 Sheath

The flame retardant PVC or LSZH(Low Smoke Zero Halogen) compound colored grey (RAL 7035) or other colors shall be applied over the screening. The sheath shall be uniform and shall not have any defects. The thickness of sheath and cable diameter shall be shown as table 2.

Table.2 thickness of sheath and cable diameter

| Thickness | Outer Diameter |  |
|-----------|----------------|--|
| (mm)      | (mm)           |  |
| 0.5±0.05  | 6.5±0.3        |  |

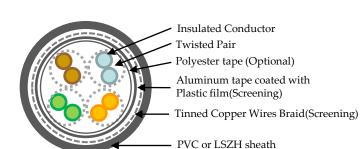



Fig 1. Cross Sectional Diagram of Cable



PAGE: 3/6

# 3. ELECTRICAL CHARACTERISTICS

# 3.1 Electrical Performances

| Characteristics         | units        | Specification                                                                                                                                                                       |  |  |
|-------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DC Resistance           | Ω/100m       | ≤ 9.5                                                                                                                                                                               |  |  |
| DC Resistance Unbalance | %            | ≤ 2.00                                                                                                                                                                              |  |  |
| Capacitance Unbalance   | pF/km        | ≤1600                                                                                                                                                                               |  |  |
| (Pair to Ground)        | (800~1000Hz) | ≥ 1000                                                                                                                                                                              |  |  |
| Insulation Resistance   | MΩ·m         | ≥ 5000                                                                                                                                                                              |  |  |
| Dielectric Strength     | DC kV/sec    | 2.5 / 2                                                                                                                                                                             |  |  |
| Impedance               | Ω            | 100 ± 59/ (at 100MHz)                                                                                                                                                               |  |  |
| (Characteristic mean)   |              | 100 ± 5% (at 100MHz)                                                                                                                                                                |  |  |
| Return Loss             | dB/100m      | $\geq 20 + 5 * \log(\text{freq})$ , $4 \leq f < 10 \text{MHz}$<br>$\geq 25$ , $10 \leq f < 20 \text{MHz}$<br>$\geq 25 - 7 * \log(\text{freq}/20)$ , $20 \leq f \leq 100 \text{MHz}$ |  |  |
| Attenuation             | dB/100m      | $\leq 1.967*\sqrt{\text{(freq)} + 0.023*(\text{freq}) + 0.1/\sqrt{\text{(freq)}}}$                                                                                                  |  |  |
| (Insertion Loss)        |              | , 4 ~ 100 MHz                                                                                                                                                                       |  |  |
| NEXT Loss               | dB/100m      | ≥ 65.3 – 15*log(freq) ,4 ~ 100MHz                                                                                                                                                   |  |  |
| Power sum NEXT Loss     | dB/100m      | ≥ 62.3 – 15*log(freq) ,4 ~ 100MHz                                                                                                                                                   |  |  |
| ELFEXT Loss             | dB/100m      | $\geq 64 - 20*\log(freq)$ ,4 ~ 100MHz                                                                                                                                               |  |  |
| Power sum ELFEXT Loss   | dB/100m      | ≥ 61 – 20*log(freq) ,4 ~ 100MHz                                                                                                                                                     |  |  |
| Propagation Delay       | ns/100m      | ≤ 534 + 36 / √ (Freq) ,4 ~ 100MHz                                                                                                                                                   |  |  |
| Propagation Delay Skew  | ns/100m      | ≤ 45, 4~100MHz                                                                                                                                                                      |  |  |

| Етоя  | Attenuation | NEXT      | PSNEXT    | ELFEXT    | PSELFEXT  | RL        | P.Delay   |
|-------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Freq. | (dB/100m)   | (dB/100m) | (dB/100m) | (dB/100m) | (dB/100m) | (dB/100m) | (ns/100m) |
| (MHz) | Max.        | Min.      | Min.      | Min.      | Min.      | Min.      | Max.      |
| 4     | 4.1         | 56.3      | 53.3      | 52.0      | 49.0      | 23.0      | 552       |
| 8     | 5.8         | 51.8      | 48.8      | 45.9      | 42.9      | 24.5      | 547       |
| 10    | 6.5         | 50.3      | 47.3      | 44.0      | 41.0      | 25.0      | 545       |
| 16    | 8.3         | 47.2      | 44.2      | 39.9      | 36.9      | 25.0      | 543       |
| 20    | 9.3         | 45.8      | 42.8      | 38.0      | 35.0      | 25.0      | 542       |
| 25    | 10.4        | 44.3      | 41.3      | 36.0      | 33.0      | 24.3      | 541       |
| 31.25 | 11.7        | 42.9      | 39.9      | 34.1      | 31.1      | 23.6      | 540       |
| 62.5  | 17.0        | 38.4      | 35.4      | 28.1      | 25.1      | 21.5      | 539       |
| 100   | 22.0        | 35.3      | 32.3      | 24.0      | 21.0      | 20.1      | 538       |

The cable performance between 1MHz and 4MHz is achieved by design only and it is therefore not necessary to test for this performance below 4MHz. (According to the IEC 61156-5 standard)

# 3.2 Measurements Precaution

All electrical characteristics specified in clause 3.1 shall be tested on one sample length of 100 meter or greater removed from the package.



PAGE: 4/6

### 4. PHYSICAL PROPERTIES

# 4.1 Insulation

The un-aged elongation, measured in accordance with clause 6.4.4 of IEC 61156-5 shall be minimum 100%, respectively.

The shrinkage of insulation, measured in accordance with clause 6.5.1 of IEC 61156-5, shall not exceed 5%

The bending test of insulation at low temperature, measured in accordance with clause 6.5.3 of IEC 61156-5, shall show no visible cracks.

# 4.2 Sheath

The un-aged tensile strength and elongation, measured in accordance with clause 6.4.6 & 6.4.7 of IEC 61156-5 shall be minimum 9MPa and 100%, respectively.

The heat-aged tensile strength and elongation, measured in accordance with clause 6.5.4 & 6.5.5 of IEC 61156-5 shall be minimum 70% and 50% of un-aged, respectively.

The LSZH compound shall meet with IEC 60754-2 and IEC 61034.

# 4.3 Cable Cold Bend

All cables shall meet the requirements of clause 6.5.7 of IEC 61156-5.

# 4.4 Flame Requirements

A cable marked "IEC 60332-1" or "CMX" shall meet the VW-1 flame test specified in IEC 60332-1.

A cable marked "IEC 60332-3" or "CM" shall meet the vertical flame test specified in IEC 60332-3 or IEEE 383



PAGE: 5 / 6

# 5. MARKING OF CABLES

The cable shall be marked on the sheath to designate the transmission performance and /or others (If ordered by purchaser).

The marking shall be repeated through the outer sheath clearly.

# 6. PACKING

Each length of completed cable shall be wound on ply-wood reel or reel-in-box. The standard delivery length is 305m or 500m.

# 7. MARKING ON TAG OR REEL

The following details shall be marked on a tag affixed to each shipping length of cable in a reel, or directly printed on the outer surface of the reel.

- 1) AWG size and number of pairs
- 2) Flame test classification
- 3) Manufacturer name and logo
- 4) Length
- 5) Others

- End of Specification -



PAGE: 6 / 6

#### **※** APPENDIX - PRODUCT PART NUMBER

| Description                         | Part Number                  |  |  |
|-------------------------------------|------------------------------|--|--|
| Category 5e SF/UTP 4Pair CMX        | SFP-E-C5G-E1VN-X 0.5X004P/xx |  |  |
| Category 5e SF/UTP 4Pair CM         | SFP-E-C5G-E1VN-M 0.5X004P/xx |  |  |
| Category 5e SF/UTP 4Pair LSZH 332-1 | SFP-E-C5G-E1ZN-X 0.5X004P/xx |  |  |
| Category 5e SF/UTP 4Pair LSZH 332-3 | SFP-E-C5G-E1ZN-M 0.5X004P/xx |  |  |

<sup>-</sup> xx denotes color: WH=White, BL=Blue, GY=Gray, VI=Violet, OR=Orange, RD=Red, GN=Green, YL=Yellow, BK=Black - Other colors are available

| REV. | Date       | Prepared<br>By | Checked<br>By | Approved<br>By | Remark                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------------|----------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00   | 2009.08.10 | К. Н. На       | B.C Jeong     | Min Son        | 1. Issued                                                                                                                                                                                                                                                                                                                                                                                 |
| 01   | 2009.12.11 | K. H. Ha       | B.C Jeong     | Min Son        | Tinned copper wire between aluminum tape and copper braid is omitted.  (clause 2.5 Screen)                                                                                                                                                                                                                                                                                                |
| 02   | 2011.04.29 | K. H. Ha       | T.W. Kim      | Y.H. Lee       | 1. Percentage of braid coverage is added. (clause 2.5) 2. Nominal Cable O.D is changed. (clause 2.7) 3. Requirement for insulation resistance is changed (clause 3.1)                                                                                                                                                                                                                     |
| 03   | 2012.07.06 | K. H. Ha       | T.W. Kim      | Y.H. Lee       | <ol> <li>1.Product part number is added to Appendix.</li> <li>2. Performance is changed to IEC 61156-5 standard criteria. (clause 3 &amp; 4)</li> <li>3. Riser grade is omitted. (clause 1 &amp; 4.4)</li> <li>4. Minimum conductor diameter is changed. (clause 2.1)</li> <li>5. Changed sheath thickness &amp; deviation range, clause 2.6.</li> <li>6. Rip cord is omitted.</li> </ol> |
| 04   | 2012.07.18 | К.Н. На        | T.W. Kim      | Y.H. Lee       | 1. Polyester tape for core wrapping is optional.                                                                                                                                                                                                                                                                                                                                          |
| 05   | 2013.12.04 | D.W. Kang      | T.W. Kim      | J.S. Baeck     | 1. Assign specific color code on grey (RAL 7035)                                                                                                                                                                                                                                                                                                                                          |
| 06   | 2015.04.22 | V.T. Nam       | -             | Y.J.Seo        | 1. IEEE 383 is added. (clause 4.4)                                                                                                                                                                                                                                                                                                                                                        |